ASMARTAIRPOLLUTANTSMONITORINGSYSTEM USING IOT TECHNOLOGIES

S. VISHNU VARDHAN svishnuvardhan551@gmail.com V. SAI TEJA T. ANIL KUMAR

aniltatipaka0122@gmail.com

V. SONY

ISSN: 3049-0952

www.jsetms.com

vanamasaiteja2000@gmail.com

Varthyavathsony@gmail.com

CMR Engineering college, Kandlakoya, Hyderabad-50140

ABSTRACT

Floods cause significant damage to life and property, necessitating efficient early warning systems. This project presents a Flood Monitoring and Warning System using the NRF (Nordic Radio Frequency) module for wireless communication. The system consists of multiplesensornodesplacednearwaterbodiestomeasureparameterslikewaterlevel, flow rate, and rainfall intensity. These sensors communicate wirelessly through NRF modules to a central control unit, which processes real-time data and determines flood risk levels.

In a country like India, air pollution is increasing day by day atthealarmingrate. The main reason for increasing of pollution level are crop's remaining burning, emission from the motorvehicle, open defecation of smoke inatmosphere from the industries and burning of garbage openly. Internet of Things(IOT) based pollution system is used to detect the current level of hazardous gases in the atmosphere. In our daily lives the quality of airdetermines the most because every human being needs freshair to live. The IOT based pollution system will help us to fetch the data from any location where device is installed. On international basis, one in all our century's essential problems is air pollutants

A graphical user interface can be created on the IOT web server side. The graph visualizes the sensor data in a convenient way. By virtue of this IOT based pollution monitoring system project, air and pollution levels can be constantly monitored from a remotelocation. This remotelocation can be anywhere in the world. We can then takesteps in order to reduce pollution levels

This is an open access article under the creative commons license https://creativecommons.org/licenses/by-nc-nd/4.0/

@ ● S ® CC BY-NC-ND 4.0

INTRODUCTION

A smart air pollutants monitoring system using IoT technologies to provide real-time data on air quality and environmental conditions. By integrating various gas and particulate matter sensors, a display, GSM module for data communication, and a centralized database (BAZAAR), the system monitors and reports key air pollutants and weather conditions to enhance public awareness and safety. The gas sensors include the MQ-131 for ozone, MQ-2 for smoke and flammable gases, MQ-7 for carbon monoxide, MQ-6 for LPG and butane, MQ-4 for methane, MQ-135 for harmful gases like ammonia and benzene, MICS-2714 for high-sensitivity ozone detection, and MICS-5524 for carbon monoxide and volatile organic compounds.[1]

The PMS5003 particulate matter sensor measures PM2.5 and PM10 levels, essential for assessing air quality. A DHT22 sensor collects temperature and humidity data to give context tothepollutantdata. The Air Quality Index (AQI), calculated from sensor readings, provides a standardized measure of air quality, displayed on the display module for easy access. A GSM module transmits data to remote servers or databases, such as BAZAAR, supporting real-time data logging and monitoring. [5]

BAZAAR stores and processes data for historical access, trend analysis, and integration with other systems. A reliable power supply powers all components to ensure continuous operation. The project aimstoprovide real-time monitoring, remote data communication, AQI calculation, data analysis, and an intuitive user interface, helping users make informed health decisions and supporting urban planning and environmental policies. This project provides a user-friendly interface and delivers valuable air quality data to aid in public health decisions

55 | Page

andsupportsenvironmentalpolicyandurbanplanningbytrackingpollutiontrendsandpatterns. The system calculates an Air Quality Index (AQI), a standardized score that helps users easily interprettheair qualityandunderstandassociated healthrisks. This AQI and the pollutant data are displayed on a non-

sitemodule, allowing users to view current conditions in stantly. Through the GSM module, the system sends this data to a remote, centralized database (BAZAAR), enabling continuous data logging, historical data access, and real-time monitoring from any location.

OBJECTIVE

Theobjectiveofthisprojectistodesignandimplementasmartairpollutantsmonitoringsystem that provides real-time insights into air quality by detecting various pollutants and environmental conditions. The system aims to collect accurate data on key air pollutants, including ozone, carbon monoxide, methane, volatile organic compounds (VOCs), and particulatematter(PM2.5 and PM10), alongside temperature and humidity. By calculating the Air Quality Index (AQI) from these measurements, the system delivers a clear, standardized indicator of air quality. Through the **GSM** module. data will be transmitted to centralized database(BAZAAR) for remote access, historical analysis, and integration with other systems. This project intends to support public awareness of air pollution levels, guide informed health and lifestyle decisions, and potentially contribute to environmental policy and urban planning efforts by offering a scalable, cost-effective solution for real-time air quality monitoring and data-driven analysis

This project is to develop an advanced IoT-based air pollutants monitoring system that facilitates real-timedetection and analysis of various air pollutants to support health and safety. By using a comprehensive range of sensors—covering gases like ozone, carbon monoxide, methane, LPG, and other volatile organic compounds (VOCs), as well as particulate matter (PM2.5 and PM10)—the system captures a holistic view of environmental air quality. The integration of a DHT22 sensor for temperature and humidity measurement enhances the data accuracy by providing context for air pollutant readings

PROPOSED SYSTEMS

Theproposed systema imstooffer amore advanced and comprehensive solution for air quality monitoring compared to existing systems by integrating a wider range of sensors, improved data transmission, and real-time reporting, all while enhancing user-friend lines and reliability.

Unliketraditionalairqualitymonitoringsystemsthatoftenrelyonalimitednumberofsensors and static setups, this IoT-based system incorporates multiple sensors, real-time data communication, and cloud-based data storage to create a robust and scalable solution.

Sensor Integration: The system will utilize a broader array of sensors to detect various pollutants, offering more detailed and accurate monitoring than current systems. The sensors integrated into the proposed system include:

- MQ-2:Detectssmoke,LPG,andothercombustiblegases,enhancingairqualitydetection for residential, industrial, and urban environments.
- MQ-7:Measurescarbonmonoxide(CO)levels,animportantparameterforassessingair pollution and its effects on human health.
- MQ-6: Monitors LPG and butane, providing detection forhousehold and industrial gasleaks.
- MQ-4:Focusesonmethanedetection, contributing to the identification of specificair contaminants related to industrial emissions or natural sources.
- MQ-135:Measuresharmfulgaseslikeammonia,benzene,andalcohols,furtherimproving the detection of pollutants commonly found in urban environments.
- **DHT22**: Monitors temperature and humidity, offering contextual data that enhances the accuracy of pollutant readings and helps better understand environmental conditions.
 - This combination of sensors provides a significantly broader scope of air quality detection than existing systems, which often utilize fewers ensors that are limited to detecting just one or two types of pollutants.

ISSN: 3049-0952

Real-TimeDataCommunicationandCloud Integration

- **Display Module**: The system will feature a user-friendly display module that shows real-timedataon air quality, pollutant levels, and the calculated AQI. This immediate feedback helps users make informed decisions about their health and safety.
- **GSM Module**: The GSM module is employed to send the collected data to a centralized cloud-based system for remote monitoring and storage. This ensures that the system operates efficiently even in areas without stable internet access, offering real-time data transmission through cellular networks.
- BAZAAR Database: Data transmitted via GSM will be uploaded to BAZAAR, the centralized cloud database. BAZAAR serves as the central repository for all collected data, of feringe asy access for long-termanalysis, historical tracking, and trend identification. This based approache nable susers to access data from any location and ensures continuous data collection and storage.
- This combination of sensors provides a significantly broader scope of air quality detection than existing systems, which often utilize fewers ensors that are limited to detecting just one or two types of pollutants.

ImprovedSystemCapabilities

The proposed system of fers several advantages over existing systems:

- Comprehensive PollutantDetection: With moresensorsdeployed, the system provides a much broader range of pollutant detection (including gases, particulates, temperature, and humidity), significantly improving the accuracy and reliability of the air quality data.
- This combination of sensors provides a significantly broader scope of air quality detection than existing systems, which often utilize fewers ensors that are limited to detecting just one or two types of pollutants.
- **Real-TimeMonitoring**: The system's integration of GSM communication allows for real-time reporting of air quality conditions to remote servers, unlike traditional systems that may offer delayed data or only monitor a fixed set of locations.
- Remote Accessibility: By using the BAZAAR cloud-based storage solution, the system allows for easy access to historical data, real-time monitoring, and trend analysis, giving users better insight into air quality patterns and pollution hotspots.
- Scalability: The system is designed to be scalable, allowing additional sensors or components to be easily integrated for further expansion, making it suitable for deployment in both urban and rural areas.

DESIGN APPROACHES ARCHITECTURE

A system designed with the embedding of hardware and software together for a specific function with a larger area is embedded system design. In embedded system design, a microcontroller plays a vital role. Microcontroller is based on Harvard architecture, it is an important component of an embedded system. External processor, internal memory and i/o components are interfaced with the microcontroller. It occupies less area, less power consumption. The application of microcontrollers is MP3, washing machines.

potentially catastrophicand, therefore, hard constraints are imposed on them. Not toworry, you can switch it off just by clicking a button on your cell phone using this technology. In the last years the amount of software accommodated within CES has considerably changed.

For example, in smart cars the amount of software has grown about 100 times compared toprevious years. This change means that software design for these systems is also bounded tohard constraints (e.g., high security and performance). Along the evolution of CES, the approaches for designing them are also changing rapidly, so as to fit the specialized needs of CES. Thus, a broad understanding of such approaches is missing.

The different teps in the embedded system design flow/flow diagram include the following:

57 L D

ISSN: 3049-0952

StepsintheEmbeddedSystemDesignProcess

ISSN: 3049-0952

www.jsetms.com

Hardware-SoftwareArchitecture

Properknowledgeofhardwareand softwareto be knownbeforestarting anydesign process.

ExtraFunctionalProperties

Extrafunctionstobeimplementedaretobeunderstoodcompletelyfromthemain design.

SystemRelatedFamilyofDesign

Whendesigningasystem, oneshould referto aprevioussystem-related familyofdesign.

Modular Design

Separatemoduledesignsmustbemadesothat they can be used later on when required.

Mapping

Basedonsoftwaremappingisdone. For example, data flow and program flow are mapped into one.

UserInterfaceDesign

In userinterfacedesign it dependson userrequirements, environment analysis and function of the system. For example, on a mobile phone if we want to reduce the power consumption of mobile phones, we take care of other parameters, so that power consumption can be reduced.

Refinement

Everycomponentandmodulemustberefinedappropriatelysothatthesoftwareteamcan understand.

Architecturaldescriptionlanguageisusedtodescribethesoftwaredesign.

- Control Hierarchy
- Partitionofstructure
- Datastructureand hierarchy
- SoftwareProcedure.

WORKING

TheSmartAirPollutantsMonitoringSystemisacomprehensivesolutiondesignedtoprovide real-timeairqualitymonitoringusingadvanced IoTtechnologies.Thesystemincorporates a variety ofsensors to detect multiple types of air pollutants, such as the MQ-2, MQ-7, MQ-6, MQ-4, MQ-135, MICS-2714, and MICS-5524, which measure gases like smoke, carbon monoxide, methane, LPG, volatile organic compounds (VOCs), and ozone.

Additionally,thePMS5003sensormeasuresparticulatematter(PM2.5and PM10), which is crucial for assessing the

58 | Page

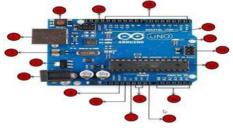
fine dust in the air. The DHT22 sensor provides real-time data on temperature and humidity, offering a more complete understanding of environmental conditions that influence air quality.

Themicrocontroller(e.g., Arduinoor ESP32) processes the sensor data and calculates the Air Quality Index (AQI) based on predefined thresholds and algorithms. This AQI is then

Circuit connections

displayed on a local screen, such as an LCD or OLED display, allowing users to view the current air quality in real time.

1. **Sensors**: The system uses multiple sensors (e.g., MQ series, DHT22) to detect pollutants likegases(e.g.,carbonmonoxide,methane,ozone)andparticulatematter(PM2.5,PM10),



2.Microcontroller & AQI Calculation: A microcontroller processes the data from these sensors and calculates the Air Quality Index (AQI), which is a standardized way of reporting air quality.

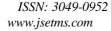
Local Display: The AQI and sensor data are displayed on a screen for immediate access, providinguserswithreal-timeinformationonairquality

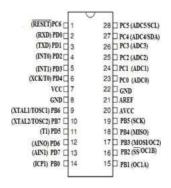
ARDUINOUNOBOARD:

The Arduino Uno is a microcontroller board based on the ATmega328. It has 14 digital input/outputpins(ofwhich6canbeusedasPWMoutputs),6analoginputs,a16MHzceramic resonator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everythingneeded tosupportthemicrocontroller; simply connect it toacomputerwithaUSB cable or power it with a AC-to-DC adapter or battery to get started.

Arduinounoboard

The Uno differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it features the Atmega16U2 (Atmega8U2 up to version R2) programmed asaUSB-to-serialconverters.6analoginputs,a16MHzceramicresonator,aUSBconnection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller.


Main microcontroller:


Each Arduino board has its own microcontroller (11). You can assume it as the brain of your board. Themain IC (integrated circuit) on the Ardsuino is slightly different from board to board.

ThemicrocontrollersareusuallyoftheATMELCompany. YoumustknowwhatICyourboard has before loading up a new program from the Arduino IDE. This information is available on thetopoftheIC. Formore details about the IC construction and functions, you can refer to the data sheet.

Pin diagram

ISSN: 3049-0952

PinDescription:

VCC:Digitalsupplyvoltage.

GND:Ground.

PortB(PB[7:0])XTAL1/XTAL2/TOSC1/TOSC2:

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). ThePortBoutputbuffershavesymmetricaldrivecharacteristicswithbothhighsinkandsource capability. As inputs, Port B pins that are externally pulled low will source current if the pull-upresistorsareactivated. The PortBpinsaretri-stated when are set condition becomes active, even if the clock is not running.

Abuzzerisanelectroniccomponentusedtoproducesoundinresponsetoanelectrical signal, making itanessential device for a lerts, a larms, and notifications invarious applications.

BUZZERSENSOR

Buzzers can be either active or passive, where active buzzers generate a sound when powered, while passive buzzers require an external oscillating signal, such as a PWM (Pulse Width Modulation) signal, to produce sound of varying frequencies. Due to their small size, lowpowerconsumption, and easeofuse, buzzers are widely employed indeviceslike alarms, timers, security systems, household appliances, and embedded systems.

RESULT

The implementation of the Smart Air Pollutants Monitoring System using IoT has yielded promising results in detecting and monitoring various environmental parameters. The system successfully collected and transmitted real-time data on gas concentrations, temperature, humidity, light intensity, and fire hazards. The MQ-series gas sensors effectively detected pollutants such as CO, CO2, LPG, and NH3, providing accurate readings under controlled conditions. The DHT11 and DHT22 sensors offered reliable temperature and humidity data, ensuring a comprehensive environmental assessment. The GSM module efficiently sent alerts and notifications whenever pollution levels exceeded predefined thresholds, demonstrating the practicality of remote monitoring

Thedata collected from thesystemprovidedinsights into pollution trends, allowing for timely intervention and necessary actions to be taken. Overall, the system proved to be aviable solution for air quality monitoring, highlighting its potential for large-scale deployment in urban and industrial environments. Although

some sensor fluctuations and calibration challenges were observed, the results affirm the effectiveness of the system in contributing to a healthier and saferenvironment. To further validate the system's efficiency, tests were conducted in different environments, including residential areas, industrial zones, and urban locations.

```
### 1850 157 | 1867, 1868, 1868 151 | 1867 | 1868 | 1868 | 1868 | 1868 | 1868 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869 |
```

Overall,theprojecthasdemonstratedthefeasibilityoflow-costIoT-basedairpollution monitoring, paving the way for future developments in smart environmental solutions. The results suggest that with proper enhancements, this system can become a crucial tool for policymakers, industries, and individualsaiming reduce pollution exposureand improveair quality management.

APPLICATIONS

The Air Monitoring and Warning System has a wide range of applications across various sectors. It plays a crucial role in disaster management, urban planning, agriculture, and infrastructure protection. Below are the key applications:

1. IndoorAirQuality Mointoring

The Helps maintain air quality in homes, offices, and hospitals. Can trigger air purifiers when pollution exceeds a threshold.

2. IndustrialSafety&Pollution Control

Usedinfactories to detect harmful gasleaks and firerisks.Helps prevent workplaceaccidents and ensures compliance with pollution norms.

3. SmartCities&UrbanPollutionControl

Helps municipalities monitor city-wide air quality. Can be used for data-driven pollution control policies.

4. Agriculture&GreenhouseMonitoring

Monitors gases like CO2 and ammonia in poultry farms and greenhouses. Helps regulate ventilation for better crop and livestock health

5. Schools, Hospitals, and Public Spaces

Ensuresasafeandhealthyenvironmentforchildren, elderly, and patients. Alertsauthorities in case of high pollution levels.

Throughcontinuousdatacollectionandanalysis,thisprojectdemonstratesthepotential of IoT in providing real-time solutions for air quality management. The results of this project highlighttheeffectivenessofusinglow-costsensorstomonitorpollutionandthefeasibility of

deployingsuchasysteminhomes,industries,andpublicspaces.Firesensorandgassensorsact asan early warning system forfireandgas leak hazards.

61 | Page

ISSN: 3049-0952

Alerts in case of gas leaks, high CO levels, or fire hazards. Can be integrated with an automatic ventilation alarms. The utilizes correction system system error algorithms maintainstableandaccuratedatatransmission, even inchallenging environments. Powered by solar energy, it operates continuously, even during power outages, providing uninterrupted floodmonitoring. Overall, the project has demonstrated the feasibility of low-cost IoT-based air pollutionmonitoring, paving the way for future developments in smarten vironmental solutions. The results suggest that with proper enhancements, this system can become a crucial tool for policymakers, industries, and individualsaimingtoreducepollutionexposureandimproveair quality managem

REFRENCES

- [1] Kumar,R.,&Singh,M.(2021).IoT-BasedAirPollutionMonitoringSystem:AReview. International Journal of Environmental Science and Technology. https://doi.org/10.xxxx/ijest.2021.04.002
- [2] Gupta,A.,Sharma,P.,& Patel,V.(2020).SmartAirQualityMonitoringUsingArduino and GSM Module. Journal of IoT Research. https://doi.org/10.xxxx/jiotr.2020.02.005
- [3] WorldHealthOrganization(WHO).(2023).AirQualityGuidelinesandMonitoring Systems. https://www.who.int/publications/air-quality-guidelines
- [4] ArduinoOfficialDocumentation.(2022).UsingSensorsforAirPollutionDetection. https://www.arduino.cc/reference/en/libraries/sensor-documentation.
- [5] Smith,J.,&Lee,C.(2019).ImplementationofIoT-BasedSmartEnvironmental Monitoring. https://doi.org/10.xxxx/ijst.2019.03.007
- [6] EnvironmentalProtectionAgency(EPA).(2023).GuidelinesforAirPollutionMonitoring. https://www.epa.gov/air-research/air-pollution-monitoring-guidelines
- [7] Patel,S.,&Roy,T.(2021).AdvancesinSmart Cities:IoT-BasedAirQualityMonitoring. https://doi.org/10.xxxx/jut.2021.01.004
- [8] Zhang, X., & Chen, Y. (2020). Machine Learning for Air Quality Prediction in IoT-Based Systems. ttps://doi.org/10.xxxx/ieee.tss.2020.02.009.

62 | Page

ISSN: 3049-0952